Homogeneous approximation property for continuous wavelet transforms
نویسندگان
چکیده
منابع مشابه
Homogeneous Approximation Property for Wavelet Frames
The homogeneous approximation property (HAP) is useful in practice since it means that the number of building blocks involved in a reconstruction of f up to some error is essentially invariant under time-scale shifts. In this paper, we prove the HAP for a large class of wavelet frames which are generated with arbitrary time-scale shifts and wavelet functions satisfying moderate decaying conditi...
متن کاملThe Homogeneous Approximation Property for wavelet frames
An irregular wavelet frame has the form W(ψ,Λ) = {aψ( a − b)}(a,b)∈Λ, where ψ ∈ L (R) and Λ is an arbitrary sequence of points in the affine group A = R ×R. Such irregular wavelet frames are poorly understood, yet they arise naturally, e.g., from sampling theory or the inevitability of perturbations. This paper proves that irregular wavelet frames satisfy a Homogeneous Approximation Property, w...
متن کاملEfficient Approximation of Continuous Wavelet Transforms
One-persistent backoff: Intuitively, the backoff delay of packets that fail by channel errors can be further optimised if the channel is sensed persistently after aborting transmission for the end of channel errors after which retransmission is initiated. For a fading channel, all users must thus be capable of end-of-fade detection, which in practice may be implemented through some form of rece...
متن کاملContinuous and Discrete Wavelet Transforms
Rob A. Zuidwijk CWI E-mail: [email protected] Url: http://www.cwi.nl/cwi/projects/wavelets.html November 6, 1997 Abstract In this lecture, the continuous wavelet transform will be discussed and some attention will be given to the discrete wavelet transform. Finally, wavelet transforms on multidimensional data will be considered. The set-up of the lecture is as follows: 1. The continuous wavelet t...
متن کاملContinuous and Discrete Wavelet Transforms
This paper is an expository survey of results on integral representations and discrete sum expansions of functions in L(R) in terms of coherent states. Two types of coherent states are considered: Weyl–Heisenberg coherent states, which arise from translations and modulations of a single function, and affine coherent states, called “wavelets,” which arise as translations and dilations of a singl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Approximation Theory
سال: 2008
ISSN: 0021-9045
DOI: 10.1016/j.jat.2008.03.010